g
i

Fo

L

ol JECHTECH

T

o e ok

m

B LT e

LGB Nl e e

g
B

10

15

20

25

-1- Docket No. P5572

Firm No. 0046.0001

METHOD, SYSTEM, AND PROGRAM FOR MANAGING INFORMATION FOR AN
APPLICATION PROGRAM USING A FILE MANAGEMENT SYSTEM

BACKGROUND OF THE INVENTION

1. Field of the Invention

[0001] The present invention relates to a method, system, and program for managing

information for an application program using a file management system.

2. Description of the Related Art
[0002] Information management programs, such as e-mail programs, calendaring

programs, project management programs, accounting programs, etc., provide users with
different views of information through a graphical user interface (GUI). Each window
view may include numerous different fields of variable information. The views may also
include user interactive elements, such as graphical buttons, hypertext links, etc., that
allow the user to interact with the application program to modify information, access
further views of information, etc. Many such information management programs
maintain the data for the fields in a relational database program comprised of records of
columns of data. Such application programs require interaction with a separate database
program or incorporate a database program within the application. Typically, the
application must utilize an Application Programming Interface (API) to communicate
with the external or embedded database program, such as the Open Database
Connectivity (ODBC) protocol. Although there are many advantages databases offer for
organizing data, embedding a database within a program or requiring an interface to
another database program increases both the complexity and cost of the application.
[0003] Other prior art applications may store application data in a single file that can be
accessed by the application as needed. Although information management programs that
store data in a single large file, such as an ASCII delimited file, may avoid the
complications experienced using a database program for data management, using a single

large file to store all the application data will likely prevent multiple users from

e° 4

2- Docket No. P5572
Firm No. 0046.0001

concurrently accessing the data file, thereby limiting such information management
programs that store data in a single data file to single user applications. Database
programs implementing a client/server architecture, on the other hand, permit multiple
users to concurrently access data in the database, yet require additional programming

5 complexity and cost to incorporate the database program with the application.
[0004] Thus, there is a need in the art for an alternative data management architecture

for storing data used by information management programs in a multi-user environment.

SUMMARY OF THE PREFERRED EMBODIMENTS
10 [0005] Provided is a method, system, and program for managing information for an

application program. The information includes an information class having a plurality of

attributes values. The application program maintains multiple information class

S

AN T el

instances, wherein each instance includes at least one of the plurality of attribute values.

User input is received indicating a plurality of information class instances and for each

P oot I sl TR AU

fi

it

15 information class instance at least one attribute value. A main directory is generated for

B

i

the application program. For each information class instance received from the user, a
subdirectory is generated from the main directory for the information class instance and,

for each received attribute value for the information class instance, one attribute file is

T W T ™

WS B 0

generated providing at least one attribute value. Each generated attribute file is stored in

g
i

20 the subdirectory of the information class instance for which the attribute value is
provided.
[0006] In further implementations, a request for information is received on at least one
requested attribute value for the information class instances. In response to the request
for information, for each information class instance, the subdirectory for the information

25 class instance is accessed and a determination is made as to whether the accessed
subdirectory includes each requested attribute value in one attribute file in the
subdirectory. If the subdirectory includes each requested attribute value in one attribute

file, then each requested attribute value from the attribute file is returned.

ey

Ll

i i

P

ke

A gn e

L1 e T o

-

i

LEA T oo T S

o At 5 o L

e ey

10

15

20

25

o° ¢

-3- Docket No. P5572
Firm No. 0046.0001

[0007] Further provided is a method, system, and program for managing information on
a plurality of projects, wherein each project is capable of having a plurality of attribute
values. User input is received on a plurality of projects and for each project at least one
attribute value. A main directory is generated and for each project for which user input is
received, a subdirectory is generated from the main directory for the project and, for each
received attribute value, one attribute file is generated providing the at least one attribute
value.

[0008] Still further, the attribute values for each project are capable of comprising
project comments, a project manager, projected completion date, project purpose, project
start date, project completion date, project status, project holidays, and project interrupts.
[0009] Additionally, a request for information may be received on at least one
requested attribute value for the projects. In response to the request for information, each
project subdirectory is accessed and a determination made as to whether the accessed
project subdirectory includes each requested attribute value in one attribute file in the
subdirectory. If the subdirectory includes each requested attribute value in one attribute

file, then each requested attribute value is returned from the attribute file.

BRIEF DESCRIPTION OF THE DRAWINGS

[0010] Referring now to the drawings in which like reference numbers represents
corresponding parts throughout:

FIG. 1 illustrates a network computing environment in which aspects of the
invention are implemented;

FIG. 2 illustrates a diagram of the file management architecture in accordance
with certain implementations of the invention;

FIGs. 3a and 3b illustrate a file management architecture used with a project
management program in accordance with certain implementations of the invention;

FIG. 4 illustrates a graphical user interface (GUI) panel to provide access to views
of the data stored in the file management architecture of FIGs. 3a, b in accordance with

certain implementations of the invention;

]

i i

g

AT

B i o b

M

e 'm

VRt AR LT ™ T
LD L8 4.0

e

10

15

20

25

4- Docket No. P5572
Firm No. 0046.0001

FIG. 5 illustrates a GUI panel in which the user enters project data into the file
management architecture of FIGs. 3a, b in accordance with certain implementations of
the invention;

FIG. 6 illustrates a GUI panel displaying project related interrupt information the
file management architecture of FIGs. 3a, b in accordance with certain implementations
of the invention; ‘

FIG. 7 illustrates logic to generate interrupt information in the file management
architecture of FIGs. 3a, b in accordance with certain implementations of the invention;

FIGs. 8a and 8b illustrate logic to display information on projects in the file
management architecture of FIGs. 3a, b in accordance with certain implementations of
the invention;

FIG. 9 illustrates a GUI panel displaying information generated according to the
logic of FIGs. 8a and 8b in accordance with certain implementations of the invention;

FIG. 10 illustrates a GUI panel displaying task information generated in
accordance with certain implementations of the invention;

FIG. 11 illustrates a GUI panel displaying subtask information generated in
accordance with certain implementations of the invention;

FIG. 12 illustrates a GUI panel displaying statistical information on the data in the
file management architecture of FIGs. 3a, b in accordance with certain implémentations
of the invention; and

FIG. 13 illustrates a GUI panel displaying project calendar information in the file
management architecture of FIGs. 3a, b in accordance with certain implementations of

the invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS
[0011] In the following description, reference is made to the accompanying drawings
which form a part hereof, and which illustrate several embodiments of the present

invention. It is understood that other embodiments may be utilized and structural and

At gy

ar e

Lot LR Db LB el

o o T L o e A

o

o

Frabe TN A IR A

LR b8 e

W ey e
e Hudi

10

15

20

25

o° @

-5- Docket No. P5572
Firm No. 0046.0001

operational changes may be made without departing from the scope of the present
invention.

[0012] FIG. 1 illustrates a network computing environment in which aspects of the
invention are implemented. A pluraiity of client computers 2a, b...n and a server
computer 4 communicate over a network 6, such as a Local Area Network (LAN), Wide
Area Network (WAN), the Internet, an Intranet, etc., using a network protocol known in
the art, e.g., Ethernet, Fibre Channel, TCP/IP, HyperText Transfer Protocol (HTTP), File
Transfer Protocol (FTP), etc. The server 4 includes an information server 8 program that
provides access to data maintained in a data directories 10. The information server 8
would access data from the data directories 10 and insert the data into view pages 12a,
b...n that provide a predefined view of the data in the data directories 10. For instance, if
the information server 8 implements an e-mail program, then one view 12a, b....n may
comprise all the messages in an "inbox"; if an accounting program, then the view pages
12a, b...n may provide a view of financial information; if a project management program,
then the view pages 12a, b...n may provide information on projects being monitored, etc.
The clients 2a, b...n further include viewer programs 14a, b...n, which may comprise any
type of program capable of viewing documents known in the art, such as an HTML web
browser, word processing program, or any document management program known in the
art to render pages of data and enable the user to interact with the server through the
graphical elements and data entry fields in the displayed page. In HTML
implementations, a user may use the viewer 14a, b...n to request information from
another view page 12a, b...n by selecting a hypertext link on the current displayed page
12a, b...n to access another view page 12a, b...n of further information in the data
directories 10.

[0013] In certain implementations, the view pages 12a, b...n may comprise HTML or
Extensible Markup Language (XML) pages including hypertext links to other view pages
12a, b..n. Additionally, the view pages 12a, b...n may be implemented in alternative
multi-media formats, such as Joint Photographic Experts Group (JPEG), the Adobe
Portable Document Format (PDF)**, PostScript**, tagged image file format (TIFF), etc.

-6- Docket No. P5572
Firm No. 0046.0001

In such case the viewer 14a, b...n would include the capability to render such alternative
view page 12a, b...n media format. In response to a request from one viewer 14a, b...n
for a particular view at a universe resource locator (URL) address, the information server
8 would access the data designated to be inserted into the requested view page 12a, b...n
5 from the data directories 10 in the manner described below and insert the accessed into

the designated field in the view page 12a, b...n. The information server 8 would then
return the filled-in view page 12a, b...n to the requesting client 2a, b...n.
[0014] The clients 2a, b...n include viewer programs 14a, b...n, such as an HTML
browser capable of downloading and rendering a page 12a, b...n of content frbm the

10 server 4 using a network transfer protocol, such as HTTP, etc. The clients 2a, b...n may
comprise any computing device known in the art, such as a personal computer, |

workstation, laptop computer, hand held computer, telephony device, mainframe, server,

etc. The server 4 comprises a server-class machine or any other type of computing

i
E
£

I3
B
£8
o
2
3

device capable of responding to data requests from the clients 2a, b...n.

e

o

15 [0015] In certain implementations, the data directories 10 store user data across a
plurality of files. For instance, a type of data maintained by the information manager 8

may be categorized as part of an information class, e.g., a project for which information

LI A THAS A H

is maintained in a project manager program; a type of e-mail box in an e-mail program; a

Bl B BB B Jle

B L b T IY

category of accounting information (e.g., expense, income, equity, etc.). Each instance of
20 the class would include related information, such as attribute values of the general class,
where the attribute values may differ among the information class instances.
[0016] FIG. 2 illustrates an arrangement of the data directories 10 where the data
managed by the information server 8 comprises an information class having a main class
directory 50. A subdirectory 52a...n is provided for each instance of the information
25 class, e.g., project, e-mail box, etc. The subdirectory 52a...n includes attribute files
54a...n that include the values for the attributes of the instance of the information class.
Thus, the attributes of a class instance are stored in the attribute file 54a...n provided for
the attribute. The attribute data may be embedded in the attribute file name 54a...n or

stored within the attribute file. Each class instance further includes a subclass. A

o° @

-7- Docket No. P5572
Firm No. 0046.0001

subclass subdirectory 56a...n is generated for each information class instance 52a...n.
The subclass 56a includes attribute files 58a...n that provide the attribute values for the
subclass. Each information class may include multiple subclasses, although only one is
shown in FIG. 2. In this way, all the data that the information server 8 makes available to
5 requesting clients 2a, b...n is dispersed through separate attribute files that are organized
into subdirectories based on the class or subclass of information to which they are
associated.
[0017] For instance, the general class directory 50 may comprise a calendar and each
calendar instance may comprise a day, such that each subdirectory 52 is an instance of

10 one day; the class may comprise an e-mail message for a particular e-mail box and the

£
=

B

instance would comprise the type of e-mail box, e.g., send, drafts, inbox, delete, etc.

[0018] In one implementation, the information server 8 comprises a project manager.

One general class would comprise a project class, and each instance provides information

attribute files.

Eg on a particular project. There would be a separate subdirectory for each project instance.
e 15 Following are some examples of attribute files that provide the attribute values for each

=

Lx project class instance. The following names comprise the file extensions used for the

P

.comments: provides user entered comments for one project.

A A T
B BB IR

.mgr: provides the name of the project manager, name can be embedded in the file

g

20 name, e.g., "jonsmith.mgr"
.profinishda, .profinishmo. .profinishyr: Indicates the projected finish or
completion date.
.projname: the name of the project.
.projtype: indicates the type of project.
25 .purpose: identifies the purpose of the object.
.restrict: limits access to the information that is displayed unless a password is

provided.

ey

N]

,,.....
W

L L

oA e o

AR OHYHh IPY I g

ol 1 Tl o o

-t

fin

10

15

20

25

o° @

-8- Docket No. P5572
Firm No. 0046.0001

.startda, .startmo, .startyr: each file provides an attribute of the start date day,

month, and year. If the start date is less than or equal to the current date, then the
project is active or completed, otherwise, the project is a future project.

.status: contains the status of the project, which may be represented as a certain
color or a combination of coloring and text.

.bugtrags: indicates the number of bugs reported.

.done: indicates the percent of the project that has completed.

finishda, .finishmo. .finishyr: each file provides an attribute of the finish day,
month, and year of the project.

-holddays: number of days project put on hold.

olidays: number of days holidays that occurred during projects.

JAnterrupts: a file including information on each interrupt to the project.

[0019] FIGs. 3a, b illustrate an implementation of the architecture of the data
directories 10 (FIG. 1) when the information server 8 implements a project manager.
Each of the above described files are maintained in a project subdirectory 100a...n for a
project instance. The project subdirectories 100a, for one software project, includes the
above mentioned attribute files 104a, 106a...144a. Additional project instances, e.g.,
100b, would also include the same attribute files 104b.....144b, but are capable of having
different attribute values. Each project instance subdirectory 100a, b...n further includes
a calendar subdirectory 150a, b...n. The calendar subdirectory 150a, b...n includes a file
152, ,...152, , for each of the n days for which there is project information to display in
the project calendar. The files 152, ,...152, , for the days have a name that designates the
year, month, and day (YYYYMMDD) of the day for which the file provides data. The
day files 152, ,...152, . may include images, hypertext links, text, etc.

[0020] Further provided is a details subdirectory 154a, b...n (FIG. 3b) providing
information on tasks associated with a project directory 100a, b...n in which the particular
details subdirectory 154a, b...n is included. The details subdirectory 154a, b...n includes

one or more task subdirectories 156, ,...156, , for each task defined for a project 100a...n.

L.l

oo b o o g B i g

A ey gy e

13t e

10

15

20

25

o° @

-9 Docket No. P5572
Firm No. 0046.0001

Each task subdirectory 156, ,...156, , includes a plurality of attribute files providing
attribute information on the task, including a .status file, e.g. 158a, providing information
on the current status of the task, such as on-time, late, delayed, quality, etc.; a .done file,
e.g. 160a, indicating the percentage completed of the task; and a .numbugs file, e.g. 162a,
indicating a number of bugs reported for the particular task. In this way, a user may
further divide a project into particular tasks for which information may be maintained and
presented, thereby further segmenting and providing a lower level of detail of
information on the project.

[0021] Additional project instance subclass directories 100b...n (shown in FIG. 3b)
may also be included, having the project attribute files 104b...144b, ..., 104n...144n,
calendar subdirectory 150b...n, and day files 152, ,...152; , ..., 152, ,..152, .. As
discussed, the attribute values may be implemented as data within the file or as data
within the file name, followed by the file extension names described above. In this way,
each discrete type of information that may be provided for an instance of a class type,
e.g., project name, is implemented as a separate file.

[0022] The information server 8 would receive requests from the viewers 14a, b...n for
a view page 12a, b...n providing access to project data in the data directories 10 or a page
that includes fields in which the user may enter data for a project that will be stored in
subdirectories and files of the data directories 10. FIG. 4 illustrates a home view page
12a that the information server 8 would initially transmit to a client 2a, b...n that provides
access through hypertext links to other of the view pages 12b...n. A client selection of
the “Add a Project” link 200 would cause the information server 8 to return a page to the
client 2a, b...n including fields in which the client can enter attributes of a new project,
where each entered attribute would be stored in one attribute file 104a...144a.

[0023] To return a view page 12b...n including project data from the data directories
10, the information server 8 would access the data in the subdirectory files in a
predefined manner to access particular information to insert into a user requested view

12b...n to return to render in the client viewer 14a, b...n.

ey

o T

B E

jul

A ey e
LRI e Ry

™ 4t
f ot

10

15

20

25

o° ¢

-10- Docket No. P5572
Firm No. 0046.0001

[0024] FIG. 5 illustrates a blank add project page 12b the information server 8 would
transmit to the client 2a, b...n in response to selection of the “Add a Project” link 200.
This page 12b includes fields in which the user enters attribute value data for the project.
Each entry field in the page 12b (FIG. 5) corresponds to one of the attribute files (FIG.
3a) as follows: project name entry field 250 corresponds to .projname 114a file; project
type entry field 252 corresponds to .projtype file 116a; purpose entry field 254
corresponds to the .purpose file 118a; the manager entry field 256 corresponds to the
.mgr file 106a; the project start entry fields 258, 260, and 262 corresponds to fields 122a,
124a, 126a; project completion entry fields 264, 266, and 268 corresponds to 134a, 136a,
and 138a files; the status entry field 270 corresponds to the .status file 128a; the
comments entry field 272 corresponds to the .comments 104a; the restrict viewing check
box 274 corresponds to the .restrict file 120a, etc.
[0025] The user at the client 2a, b...n would select the submit changes button 278
displayed on the page 12b in their viewer program 14a, b...n to transmit the page 12b
including data entered in one or more of the entry fields 250-274. In response to
receiving the page, the information server 8 would then create a new subdirectory 100,,,
for the new project. For each entry field in which data is entered, the information server
8 would create the file corresponding to such data entry field and then implement the
attribute value entered in the entry field 250-274 in the created files 104,,,....144,,,,
where the added project comprises the (n +1)th project for which information is
maintained in the projects directory 102. The information server 8 would further
generate a calendar subdirectory for the new project subdirectory and add a day file for
the day the project was created. Moreover, a details subdirectory for the new project
subdirectoy would also be added. In this way, all the subdirectories and accompanying
files are created for the project subdirectory being created. Additionally, there can be
additional fields in the add project page 12b for additional attributes and information
which may be maintained in additional files in the project subdirectory.
[0026] Selection of the “Projects Interrupts/Delays™ hypertext link 202 in the home
page 12a (FIG. 4) would display all interrupts/delays and a link to a page (not shown)

™y

o

¢ o
o 0 i g

,,....
Lol

.,.‘.,,
i

g
L1 T

e,

E IR L T/ Lol]

ol L HLE LS B

B g

Jin

e

10

15

20

25

o° ¢

-11- Docket No. P5572
Firm No. 0046.0001

through which the user can enter information on an interrupt to a project. The entry
fields on the add interrupt entry page would allow for entry of data in fields for the
following interrupt attributes.
Type of Delay: one of a set of predefined types of delays, such as development
delay (waiting on baselines, delays caused by an external group, etc.),
management hold (number of days management put project on hold), setup
(number of days required to setup lab equipment, including setup time after an
interruption/delay), holidays, vacation, etc.
Date: the date the interruption began.
Duration: the duration in days of the interruption.

Comments: brief user comments providing further information on the contents.

[0027] In certain implementations, all the above information would be maintained in
the .interrupts file 144a, b...n for each interrupt to the project associated with the
subdirectory 100a, b...n including the interrupts file 144a, b...n. The .interrupt file 144a,
b...n would include, for each interrupt, each of the above attributes (type of delay, date,
duration, and comments). In this way, the attribute file .interrupts 144a, b...n has an
attribute that has multiple components and would include multiple instances of the
components, one instance for each defined interrupt. The multiple components of the
interrupt include the interrupt attributes, such as type of delay, date, duration, etc. Thus,
certain of the attribute files may include only one value, e.g., the start month, or may
include multiple instances, such as multiple interrupts. Further, each attribute value
instance in the attribute file may itself be comprised of multiple components or sub-
attribute values.

[0028] FIG. 6 illustrates an example of the view page 12d that the information server 8
would generate to include information on interrupts. The page 12d may also allow the
user to sort interrupts by date, project, type of delay, etc., and sum up interrupt days by
month, year, and total. FIG. 7 illustrates logic implemented in the information server 8

to generate the view page 12d shown in FIG. 6. Control begins at block 300 where

o

e
IR

oy e Hih 0
0w T o Y A

LN M g gy e

i i i

okl TR A

R)

Ii=

10

15

20

25

o° 4

-12- Docket No. P5572
Firm No. 0046.0001

information sever 8 receives user selection of the projects interrupts/delays link 202
(FIG. 4). A loop is then performed at blocks 302 through 312 for each project
subdirectory 100a, b...n in the projects directory 102 (FIGs. 3a, b). If (at block 304) there
is an .interrupts file 144a, b...n in the subdirectory i, then the information server 8
accesses (at block 306) the .interrupts file 144a, b...n. The information server 8 then
generates (at block 308) a table including a row for each project for which interrupt
information is provided in the accessed .interrupts file 144a, b...n, including the
information on the project name, type of delay, date, duration days, and comments. In
this way, the summary view 12d of FIG. 6 may have multiple rows of interrupts for a
project if the project has experienced multiple interrupts, with monthly subtotals and
complete totals.

[0029] The information server 8 then accesses the interrupt summary page template and
generates a page 12d including, but not limited to, the generated table 332. FIG. 6
illustrates the generated page 300 for the interrupt selection including the table 332 and
an add new interrupt button 334 which would return page 12¢ (not shown) including
entry fields for the user to enter interrupt information. The add new interrupt 334 may be
displayed on other view pages. The user would enter the interrupt information through
their view program GUI 14a, b...n and then submit the page to the information server 8
to add a new project interrupt delay to an .interrupt file for the project, or create a new
.nterrupt file for the project if one does not exist.

[0030] FIGs. 8a, b illustrate logic implemented in the information server 8 program to
generate pages to return to the user in response to selection of the active projects link
204, the completed projects link 206, or the future projects link 208 in FIG. 4. FIG. 9
illustrates an example of a page displaying information on projects in response to
selection of one of the links 204, 206, or 208. With respect to FIGs. 8a, b, control begins
at block 350 upon user selection of one of the links 204, 206, or 208. For each project i
subdirectory, a loop is performed at blocks 352 through 382 in FIG. 8b. If (at block 354)
the completed projects link 206 was selected and the .status file 128a, b...n in

subdirectory i indicates (at block 356) that the status is completed, then a determination is

ey

o i g

AT g

WA e

o o o o g

B

"

sl

SPTH Pt e m

oy
U WL HCH LR B

g

10

15

20

25

-13- Docket No. P5572
Firm No. 0046.0001

made (at block 358) as to whether the full view is selected to be displayed. The user may
configure on a separate page the display attributes, such as whether full or partial
information is displayed. If the full view is to be displayed, then the information server
8 adds (at block 360) a line to the displayed projects section of the displayed projects
view page, and adds the one or more of the following attribute values from the attribute
files in the subdirectory for project i to the added line in the displayed projects section:
the project name from .projname file; status from .status file, project purpose from
.purpose file; project manager from .mgr file; the start date from the .start[da, mo, yr]
files; the finish date from .finish[da, mo, yr] files; and comments from .comments file.
[0031] If (at block 358) the full view option is not selected, then a single row of data is
displayed, instead of multiple rows, including such information as the project name from
the .projname file 114a, the manager name, start data, projected completion, percent
completed, and status form other of the attribute files.

[0032] If (at block 364) the active projects link 204 (FIG. 4) is selected, then a
determination is made if the project is complete. This determination is made by checking
the .status file. If (at block 366) the status is not complete and if (at block 368) the start
date indicated in the start date files in the .start[da, mo, yr] attributes files 122a...n,
124a...n, 126a...n is less than or equal to the current date, then the project is active. If the
project is active, then if (at block 370) the full view option is selected, then the
information server 8 adds a row to display information on the active project. The
information gathered from the attribute files 104a...n to 144a...n and displayed would be
the same described with respect to block 360, except that the actual start date from the
.startda, .startmo, and .startyr 122a...n, 124a...n, and 126a....n would be displayed, not a
projected start date, and the projected completion date from the files .profinish[da, mo,
yr] 108a...n, 110a...n, and 112a...n would be displayed instead of the actual finish date.
If the project is not active, from the no branches of blocks 366 or 368, then control
proceeds to block 382 to consider the next project.

[0033] If (from the no branch of block 364) the future projects link 208 (FIG. 4) was

selected, then a determination is made as to whether the project is defined to start in the

e e
LI N i e

FrLME o L
i

A0 T et m

L i g g

" n

i

~ype

10

15

20

25

o° @

-14- Docket No. P5572
Firm No. 0046.0001

future. With respect to FIG. 8b, this determination is made by checking the .status file.
If (at block 374) the status is not completed and if (at block 376) the start date is later
than the current date, then the project will begin in the future. In such case, if the full
view option is selected (at block 378), then the information server 8 generates into the
page information from the attribute files 104a...n to 144a...n and the displayed data would
be the same described with respect to block 360, except that the projected start date from
the .startda, .startmo, and .startyr 122a...n, 124a...n, and 126a....n would be displayed, not
the actual start date, and the projected completion date from the files .profinish[da, mo,
yr] 108a...n, 110a...n, and 112a...n would be displayed instead of the actual finish date.
[0034] FIG. 9 illustrates an example of the project display view 12e generated by the
information server for completed projects. The table 388 includes the list of all the
completed projects generated using the logic of FIGs. 8a, b. This view page 12e may be
generated in response to user selection fo the completed projects link 206 (FIG. 4)
Selection of the edit hypertext link 384 would cause the information server 8 to return a
view page 12a, b...n including the attribute values pre-filled in the entry fields to enable
the user to edit the attribute values for the project. The information gathered from the
different attribute files for each completed project is displayed in the table 388. Selection
of a details link 386 would display a details page 12f in which the user may enter
information on tasks, interrupts, bugs or phases for a project.
[0035] FIG. 10 illustrates an example of the details view 12f of a task project status
displayed for an active project in response to the selection of a details link, such as the
details link 386 in the projects table 12e. The task area column 400 displays the name of
tasks defined for a project. As discussed, each separate task would comprise a
subdirectory 156, ,...156, , (FIG. 3b) of the details subdirectory 154a of the project 100a,
b...n for which the task is defined. The task on time column 402 indicates the current
status of the task, which may be stored in the .Status file 158a in the task subdirectory
(FIG. 3b). The percentage of task completion shown in the third column 404 may also be
stored in a separate file (160a) within the task subdirectories 156, ,...156, ,as well as the

.numbugs file 162a, which displays the number of bugs filed for a task in column 406.

e

e T

ANG ey e

T o

T Lokt DI hant TR Aol [B | g

TN e O

Hi

i H LU T

10

15

20

25

-15- Docket No. P5572
Firm No. 0046.0001

Additional columns of information may be provided in a task view for which there would
be one or more files under the task subdirectory 156, ,...156, .

[0036] In still further implementations, each task may be comprised of subtasks having
a separate percentage complete for each subtask. FIG. 11 illustrates an implementation
of a projects table 12g where two of the tasks within the projects were defined to include
subtasks. Each defined subtask 414 and 416 includes further subsections, shown as A, B,
and C for subtask 414 and 1, 2, and 3 for subtask 416, in which the user may enter
different percentage down amounts indicating the percentage completed of the different
sections of a subtask. The data for each subtask could be stored in a separate directory
of the task subdirectory 156, ,...156, ., (FIG. 3b) where each subtask subdirectory would
further include files for the attributes for a subtask, such as the percentage completed of
different sections of the subtask.

[0037] In further implementations, in response to the user selecting the statistic/metric
link 210 (FIG. 4), the information server 8 would search certain of the attribute files
104a...n to 144a...n and the .done file 160a for each project to gather metric and statistical
data on certain attribute values on a project-by-project basis. The information may the be
displayed in a metric view 12h shown in FIG. 12. For instance, information on the start
and finish date displayed in column 420 may be obtained from the start 122a, 124a, 126a
and the finish 134a, 136a, and 138a attribute files and information on the number of days
a project was interrupted 422 and the type of interrupt 426, 428, 430 (holidays, days
interrupted due to setup, and days interrupted due to management) would be obtained
from the .interrupts file 144a...n for each project. Further displayed is a percent
completed 432 of the project which may be obtained from the .done 160a file.
Information on the number of holidays could be obtain from the .holidays files 142a...n.
Other displayed statistical information may be derived from data in the attribute files.
For instance, the number of days an active project has been active, shown in column 424
of FIG. 12, may be determined by subtracting the start date from the current date, and
then subtracting any holidays, interrupt days, and weekends. Such information on the

status can be obtained from the .status attribute file 128a....n and the start related and

]

PR L N LT (Lot
b doh st i

ih e

"':i

i

AT T A]

T fodh ot B Bl T

ey

10

15

20

25

-16- Docket No. P5572
Firm No. 0046.0001

finish related attribute files. The information displayed in the view 12h may further
summarize information on a per task basis if multiple tasks are defined for a project.
Such a breakdown would require further subcolumns in each type of delay 426, 428, 430
to provide the information for each task defined for a project.
[0038] As discussed, there may be additional subclasses of an information class. For
instance, the calendar subclass of a project class provides a calendar view of a project.
The calendar subdirectory 150a...n (FIGs. 3a, b) that stores the data for the project
calendar includes one attribute file 152, ,...152, | for each day for which there is
information to present. Each day attribute file for a calendar subdirectory includes
information for a day. In certain implementations, whenever a user submits a page
including a new interrupt added in the .interrupts file 144a...n or a new bug added to the
.bugtrags file, then the information server 8 will append the information to the day file
152, ,...152, , for the day and affected project.
[0039] FIG. 13 illustrates an example of a project calendar view 12i, where each day
entry is either empty or includes the information added to the attribute file for that day in
response to information being added to one of the project attribute files tracked by the
calendar. For instance, if changes to the .interrupts file 144a...n are made concerning a
new interrupt, then such changes would be reflected in the day file 152, ,...152, , for the
particular day on which the interrupt occurred. In response to a tracked attribute file
being modified, the information server 8 would apply the updates to the tracked file to
the calendar file for the effected day. Other files that may be tracked by the calendar
include the .bugtraq file etc. Additionally, the user may directly enter information into
the project calendar 440 by selecting a day and adding the information. In response, the
information server 8 would add the user entered information into the day file 152,
152, , for the user selected day and project. If there is no day file 152, ,...152, , for
the affected day, then the information server may create a new day file for the added
information.
[0040] The described implementations concerned a file architecture for storing

information used by an application program. In the file architecture, the application data

o°® @

-17- Docket No. P5572
Firm No. 0046.0001

is stored in separate files, and then accessed to allow a user to enter information or view
the application data dispersed throughout different files.
[0041] The described file architecture may be implemented using standard file data
structures and file management commands supplied by the operating system. The
5 information server 8 would make file management command calls to access the data

dispersed through the files in the file architecture.
[0042] The described implementations can implement a robust information
management program without requiring the use of a database application program
because the database and data management is implemented in the file system directories.

10 This aspect makes the described architecture highly portable to other systems because
applications written for different operating systems may include the same logic, but just

use the calls for the target operating system. Because the basic file management

operations are very similar for different operating systems, creating different versions of

ATY vy g

i

Bl o)

the information manager program for different operating systems would only require

i

ar
il

15 modifying the file management calls, which are often very similar in operation.

[0043] Additionally, the described implementations communicate with the users using

g e
I

el

an open document format compatible with the viewer programs users are likely to already

have installed on their client systems 2a, b...n, e.g., web browsers. In such

il il i,

£
:

implementations, the users do not need to install any additional client programs on their

fin

20 machine because their viewer program is all that is needed. Implementing the system in
this manner avoids the need to install special purpose database and interface software on
both the clients and server because the described implementations exploit already

existing installed viewer and network communication programs.

25 Additional Implementation Details

[0044] The described file management architecture may be implemented as a method,
apparatus or article of manufacture using standard programming and/or engineering
techniques to produce software, firmware, hardware, or any combination thereof. The

term “article of manufacture” as used herein refers to code or logic implemented in

o™

0 i i

e e gren

e e e

trom
.

F i T 7]

e gt T b D

g ey

10

15

20

25

-18- Docket No. P5572
Firm No. 0046.0001

hardware logic (e.g., an integrated circuit chip, Field Programmable Gate Array (FPGA),
Application Specific Integrated Circuit (ASIC), etc.) or a computer readable medium
(e.g., magnetic storage medium (e.g., hard disk drives, floppy disks,, tape, etc.), optical
storage (CD-ROMs, optical disks, etc.), volatile and non-volatile memory devices (e.g.,
EEPROMs, ROMs, PROMs, RAMs, DRAMs, SRAMs, firmware, programmable logic,
etc.)). Code in the computer readable medium is accessed and executed by a processor.
The code in which preferred embodiments are implemented may further be accessible
through a transmission media or from a file server over a network. In such cases, the
article of manufacture in which the code is implemented may comprise a transmission
media, such as a network transmission line, wireless transmission media, signals
propagating through space, radio waves, infrared signals, etc. Of course, those skilled in
the art will recognize that many modifications may be made to this configuration without
departing from the scope of the present invention, and that the article of manufacture may
comprise any information bearing medium known in the art.
[0045] In the described implementations, the view pages 12a, b...n were implemented
as HTML pages for display in a web browser type viewer. Additionally, the view pages
12a, b...n may be in alternative media formats, such as Extensible Markup Language
(XML) pages, Standard Generalized Markup Language (SGML) file, ASCII, etc. The
described implementations utilize a browser program, such as a web browser capable of
rendering HTML and other markup language content. However, any presentation
program capable of rendering content in any media format may be used to render the
state changes supplied by the server.
[0046] In the described implementations, the client and server used the HTTP protocol
to communicate. In alternative implementations, the client and server may use any
communication or messaging protocol known in the art to communicate.
[0047] The described implementations include one class type whose files are stored in a
subdirectory of the main directory and one subclass for each class type, implemented as a
subdirectory of the information class subdirectory. Additional information class types

may be added at the same level providing different types of information and additional

&

s §
i
=
]

T o T TR O I
R B R B

e

A 1

-19- Docket No. P5572
Firm No. 0046.0001

attribute files may be provided to store the values associated with the additional
information classes.

[0048] The preferred logic of FIGs. 7 and 8a, b describe specific operations occurring
in a particular order. In alternative embodiments, certain of the logic operations may be
performed in a different order, modified or removed and still implement preferred
embodiments of the present invention. Morever, steps may be added to the above
described logic and still conform to the preferred embodiments. Further, operations
described herein may occur sequentially or certain operations may be processed in
parallel.

[0049] The foregoing description of the preferred embodiments of the invention has
been presented for the purposes of illustration and description. It is not intended to be
exhaustive or to limit the invention to the precise form disclosed. Many modifications
and variations are possible in light of the above teaching. It is intended that the scope of
the invention be limited not by this detailed description, but rather by the claims
appended hereto. The above specification, examples and data provide a complete
description of the manufacture and use of the composition of the invention. Since many
embodiments of the invention can be made without departing from the spirit and scope of

the invention, the invention resides in the claims hereinafter appended.

** Adobe and PostScript are trademarks of Adobe Systems, Inc.

	2001-10-09 Specification

